Autonomous Underwater Vehicle Control

RBE 502: Final Project

Sean Tseng, Omri Green, Max Wolfley, Joseph Lombardi

Outline

- Introduction
- Robot Model
- Control Description
- MATLAB Implementation
- Simulation Results
- Discussion
- Conclusion

Introduction

- What are AUV's
- Project Goal

Robot Model

- Model includes:
 - Buoyant force Fb vs. gravity Fg
 - Thruster Ft vs. drag Fd
 - Externalities: Current force Fc

Control Description

- Control:
 - Rudder angle orientation error
 - Thruster velocity position error
 - Buoyant force depth error
- Complete controls for 3D

MATLAB Implementation

- Code is discrete time-based (dt = 0.01)
- Robot state iterated over time (50s)
- Desired trajectory over time
 - Initial descent phase
 - Search phase
- Control function (PD)
- Saturation filters
- Iterate to next state

%% Initial Configuration of the robot

X(:,1)=[0, 2, 0, 0, 0, 0]; % x, y, z, theta, rudder, velocity
X_error(:,1) = [0,0,0];
X_v_over_t = [];

th_max_fwd = 1.5; th_max_rev = -0.25; max_rud_pos = deg2rad(60); max_z = 1;

th_gain = 4; z_gain = 4; r_gain = 400;

fwd_offset = 0.25;

Simulation Results

- Robot starts with position error
- Orients and moves to path
- Descends along spiral
- Follows 'search' pattern at depth
- Varying current forces
 - Do not cause large deviations

Discussion

- Cartesian and directional error settle
- Theta error (rudder) oscillates
- Tuning necessary for rudder
 - Currently PD
 - Possibly add integral component

Conclusion

- Successful simulation
- Further development:
 - Tuning control function
 - Advanced model
 - Localization and mapping
 - Arbitrary/disjoint trajectory

